Product data sheet

Specifications

variable speed drive ATV71 -11kW-15HP - 480V - EMC filter-w/o graphic terminal

ATV71HD11N4Z
(!) Discontinued on: 31 March 2020
(1) To be end-of-service on: 31 March 2028
(!) Discontinued - Service only

Range of product	Altivar 71
Product or component type	Variable speed drive
Product specific application	Complex, high-power machines
Component name	ATV71
Motor power kW	$11 \mathrm{~kW}, 3$ phases at $380 \ldots 480 \mathrm{~V}$
Motor power hp	$15 \mathrm{hp}, 3$ phases at $380 \ldots 480 \mathrm{~V}$
Maximum motor cable length	50 m shielded cable 100 m unshielded cable
Power supply voltage	380... 480 V-15... 10 \%
Network number of phases	3 phases
Line current	30 A for 480 V 3 phases $11 \mathrm{~kW} / 15 \mathrm{hp}$ 36.6 A for 380 V 3 phases $11 \mathrm{~kW} / 15 \mathrm{hp}$
EMC filter	Integrated
Assembly style	With heat sink
Variant	Without remote graphic terminal
Apparent power	24.1 kVA at 380 V 3 phases $11 \mathrm{~kW} / 15 \mathrm{hp}$
Prospective line Isc	22 kA for 3 phases
Nominal output current	21 A at 4 kHz 460 V 3 phases $11 \mathrm{~kW} / 15 \mathrm{hp}$ 27.7 A at 4 kHz 380 V 3 phases $11 \mathrm{~kW} / 15 \mathrm{hp}$
Maximum transient current	41.6 A for 60 s 3 phases $11 \mathrm{~kW} / 15 \mathrm{hp}$ 45.7 A for 2 s 3 phases $11 \mathrm{~kW} / 15 \mathrm{hp}$
Output frequency	0.1... 599 Hz
Nominal switching frequency	4 kHz
Switching frequency	$1 . . .16 \mathrm{kHz}$ adjustable $4 . . .16 \mathrm{kHz}$ with derating factor
Asynchronous motor control profile	ENA (Energy adaptation) system for unbalanced loads Sensorless flux vector control (SFVC) (voltage or current vector) Voltage/frequency ratio (2 or 5 points) Flux vector control (FVC) with sensor (current vector)
Type of polarization	No impedance for Modbus
Complementary	
Product destination	Asynchronous motors

	Synchronous motors
Power supply voltage limits	$323 . .528 \mathrm{~V}$
Power supply frequency	50... $60 \mathrm{~Hz}-5 . . .5$ \%
Power supply frequency limits	$47.5 \ldots 63 \mathrm{~Hz}$
Speed range	1... 100 for asynchronous motor in open-loop mode, without speed feedback $1 . . .1000$ for asynchronous motor in closed-loop mode with encoder feedback $1 . . .50$ for synchronous motor in open-loop mode, without speed feedback
Speed accuracy	+/- 0.01% of nominal speed in closed-loop mode with encoder feedback 0.2 Tn to Tn $+/-10 \%$ of nominal slip without speed feedback 0.2 Tn to Tn
Torque accuracy	+/- 15% in open-loop mode, without speed feedback $+/-5 \%$ in closed-loop mode with encoder feedback
Transient overtorque	170% of nominal motor torque $+/-10 \%$ for 60 s every 10 minutes 220% of nominal motor torque $+/-10 \%$ for 2 s
Braking torque	<= 150% with braking or hoist resistor 30% without braking resistor
Synchronous motor control profile	Vector control without speed feedback
Regulation loop	Adjustable PI regulator
Motor slip compensation	Adjustable Not available in voltage/frequency ratio (2 or 5 points) Automatic whatever the load Suppressable
Diagnostic	1 LED (red) for drive voltage
Output voltage	<= power supply voltage
Insulation	Electrical between power and control
Type of cable for mounting in an enclosure	With a NEMA Type 1 kit: 3 wire(s)UL 508 cable at $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C} /$ PVC With an IP21 or an IP31 kit: 3 wire(s)IEC cable at $40^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C} /$ PVC Without mounting kit: 1 wire(s)IEC cable at $45^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C} /$ PVC Without mounting kit: 1 wire(s)IEC cable at $45^{\circ} \mathrm{C}$, copper $90^{\circ} \mathrm{C} / \mathrm{XLPE} / E P R$
Electrical connection	Terminal, clamping capacity: $2.5 \mathrm{~mm}^{2}$, AWG 14 (Al1-/Al1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR) Terminal, clamping capacity: $16 \mathrm{~mm}^{2}$, AWG 4 (L1/R, L2/S, L3/T, U/T1, V/T2, W/T3, PC/-, PO, PA/+, PA, PB)
Tightening torque	0.6 N.m (Al1-/AI1+, Al2, AO1, R1A, R1B, R1C, R2A, R2B, LI1...LI6, PWR) 3 N.m, 26.5 lb. in (L1/R, L2/S, L3/T, U/T1, V/T2, W/T3, PC/-, PO, PA/+, PA, PB)
Supply	Internal supply for reference potentiometer (1 to 10 kOhm): $10.5 \mathrm{VDC}+/-5 \%,<10 \mathrm{~mA}$, protection type: overload and short-circuit protection Internal supply: 24 V DC ($21 \ldots 27 \mathrm{~V}$), $<200 \mathrm{~mA}$, protection type: overload and short-circuit protection
Analogue input number	2
Analogue input type	Al1-/AI1+ bipolar differential voltage: +/- 10 V DC 24 V max, resolution 11 bits + sign AI2 software-configurable current: $0 \ldots .20 \mathrm{~mA}$, impedance: 242 Ohm, resolution 11 bits AI2 software-configurable voltage: $0 \ldots 10 \mathrm{~V}$ DC 24 V max, impedance: 30000 Ohm, resolution 11 bits
Input sampling time	```2 ms +/- 0.5 ms (Al1-/Al1+) - analog input(s) 2 ms +/- 0.5 ms (Al2) - analog input(s) 2 ms +/- 0.5 ms (LI1...LI5) - discrete input(s) 2 ms +/- 0.5 ms (LI6)if configured as logic input - discrete input(s)```
Response time	$<=100 \mathrm{~ms}$ in STO (Safe Torque Off) AO1 2 ms , tolerance $+/-0.5 \mathrm{~ms}$ for analog output(s) R1A, R1B, R1C 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s) R2A, R2B 7 ms , tolerance $+/-0.5 \mathrm{~ms}$ for discrete output(s)
Absolute accuracy precision	+/- 0.6% (Al1-/Al1+) for a temperature variation $60^{\circ} \mathrm{C}$ $+/-0.6 \%$ (Al2) for a temperature variation $60^{\circ} \mathrm{C}$ $+/-1 \%\left(\right.$ AO1) for a temperature variation $60^{\circ} \mathrm{C}$
Linearity error	$\begin{aligned} & +/-0.15 \% \text { of maximum value (Al1-/Al1+, Al2) } \\ & +/-0.2 \%(\mathrm{AO} 1) \end{aligned}$
Analogue output number	1
Analogue output type	AO1 software-configurable logic output 10 V 20 mA AO1 software-configurable current $0 . . .20 \mathrm{~mA}$, impedance: 500 Ohm, resolution 10 bits AO1 software-configurable voltage $0 \ldots 10 \mathrm{~V} \mathrm{DC}$, impedance: 470 Ohm , resolution 10 bits
Discrete output number	2
Discrete output type	Configurable relay logic: (R1A, R1B, R1C) NO/NC - 100000 cycles

Minimum switching current	3 mA at 24 V DC for configurable relay logic
Maximum switching current	R1, R2: 2 A at 250 VAC inductive load, cos phi $=0.4$ R1, R2: 2 A at 30 V DC inductive load, cos phi $=0.4$ R1, R2: 5 A at 250 VAC resistive load, cos phi $=1$ R1, R2: 5 A at 30 V DC resistive load, cos phi $=1$
Discrete input number	7
Discrete input type	LI1...LI5: programmable 24 V DC with level 1 PLC, impedance: 3500 Ohm LI6: switch-configurable 24 V DC with level 1 PLC, impedance: 3500 Ohm LI6: switch-configurable PTC probe 0...6, impedance: 1500 Ohm PWR: safety input 24 V DC, impedance: 1500 Ohm conforming to ISO 13849-1 level d
Discrete input logic	```Negative logic (sink) (LI1...LI5), > 16 V (state 0), < 10 V (state 1) Positive logic (source) (LI1...LI5), < 5 V (state 0), > 11 V (state 1) Negative logic (sink) (LI6)if configured as logic input, > 16 V (state 0), < 10 V (state 1) Positive logic (source) (LI6)if configured as logic input, < 5 V (state 0), > 11 V (state 1)```
Acceleration and deceleration ramps	Automatic adaptation of ramp if braking capacity exceeded, by using resistor Linear adjustable separately from 0.01 to 9000 s S, U or customized
Braking to standstill	By DC injection
Protection type	Against exceeding limit speed: drive Against input phase loss: drive Break on the control circuit: drive Input phase breaks: drive Line supply overvoltage: drive Line supply undervoltage: drive Overcurrent between output phases and earth: drive Overheating protection: drive Overvoltages on the DC bus: drive Short-circuit between motor phases: drive Thermal protection: drive Motor phase break: motor Power removal: motor Thermal protection: motor
Insulation resistance	> 1 mOhm 500 V DC for 1 minute to earth
Frequency resolution	Analog input: $0.024 / 50 \mathrm{~Hz}$ Display unit: 0.1 Hz
Communication port protocol	CANopen Modbus
Connector type	1 RJ45 (on front face) for Modbus 1 RJ45 (on terminal) for Modbus Male SUB-D 9 on RJ45 for CANopen
Physical interface	2-wire RS 485 for Modbus
Transmission frame	RTU for Modbus
Transmission rate	4800 bps, 9600 bps, 19200 bps, 38.4 Kbps for Modbus on terminal $9600 \mathrm{bps}, 19200 \mathrm{bps}$ for Modbus on front face $20 \mathrm{kbps}, 50 \mathrm{kbps}, 125 \mathrm{kbps}, 250 \mathrm{kbps}, 500 \mathrm{kbps}, 1 \mathrm{Mbps}$ for CANopen
Data format	8 bits, 1 stop, even parity for Modbus on front face 8 bits, odd even or no configurable parity for Modbus on terminal
Number of addresses	1... 127 for CANopen 1... 247 for Modbus
Method of access	Slave CANopen
Marking	CE
Operating position	Vertical +/-10 degree
Height	295 mm
Depth	213 mm
Width	210 mm
Net weight	8 kg
Option card	Communication card for CC-Link Controller inside programmable card Communication card for DeviceNet Communication card for EtherNet/IP Communication card for Fipio I/O extension card Communication card for Interbus-S Interface card for encoder

Communication card for Modbus Plus
Communication card for Modbus TCP
Communication card for Modbus/Uni-Telway
Overhead crane card
Communication card for Profibus DP
Communication card for Profibus DP V1

Environment

Noise level	57.4 dB conforming to 86/188/EEC
Dielectric strength	3535 V DC between earth and power terminals 5092 V DC between control and power terminals
Electromagnetic compatibility	$1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
Standards	EN 61800-3 environments 2 category C3 EN 55011 class A group 2 IEC 60721-3-3 class 3S2 EN/IEC 61800-5-1 EN 61800-3 environments 1 category C3 UL Type 1 EN/IEC 61800-3 IEC 60721-3-3 class 3C1
Product certifications	UL C-Tick GOST CSA NOM 117
Pollution degree	2 conforming to EN/IEC 61800-5-1
IP degree of protection	IP20 on upper part without blanking plate on cover conforming to EN/IEC 60529 IP20 on upper part without blanking plate on cover conforming to EN/IEC 61800-5-1 IP21 conforming to EN/IEC 60529 IP21 conforming to EN/IEC 61800-5-1 IP41 on upper part conforming to EN/IEC 60529 IP41 on upper part conforming to EN/IEC 61800-5-1 IP54 on lower part conforming to EN/IEC 60529 IP54 on lower part conforming to EN/IEC 61800-5-1
Vibration resistance	$1 \mathrm{gn}(\mathrm{f}=13 \ldots 200 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-6 1.5 mm peak to peak ($\mathrm{f}=3 \ldots 13 \mathrm{~Hz}$) conforming to EN/IEC 60068-2-6
Shock resistance	15 gn for 11 ms conforming to EN/IEC 60068-2-27
Relative humidity	5... 95% without condensation conforming to IEC 60068-2-3 $5 . . .95 \%$ without dripping water conforming to IEC 60068-2-3
Ambient air temperature for operation	$-10 \ldots 50^{\circ} \mathrm{C}$ (without derating)
Ambient air temperature for storage	$-25 . . .70^{\circ} \mathrm{C}$
Operating altitude	<= 1000 m without derating 1000... 3000 m with current derating 1% per 100 m

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Height	35.0 cm
Package 1 Width	34.0 cm
Package 1 Length	45.5 cm
Package 1 Weight	10.965 kg
Unit Type of Package 2	506
Number of Units in Package 2	1
Package 2 Height	73.5 cm
Package 2 Width	60.0 cm

Package 2 Length	80.0 cm
Package 2 Weight	23.965 kg
Unit Type of Package 3	P06
Number of Units in Package 3	2
Package 3 Height	77.0 cm
Package 3 Width	80.0 cm
Package 3 Length	60.0 cm
Package 3 Weight	30.43 kg

Offer Sustainability

Sustainable offer status	Green Premium product
EU RoHS Directive	Pro-active compliance (Product out of EU RoHS legal scope) EU RoHS Declaration
Mercury free	Yes
China RoHS Regulation	China RoHS declaration
RoHS exemption information	Yes
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information WEEE The product must be disposed on European Union markets following specific waste collection and
California proposition b5 $\mathbf{6 5}$	WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov

Contractual warranty
Warranty
18 months

Product data sheet

ATV71HD11N4Z
Dimensions Drawings

Variable Speed Drives without Graphic Display Terminal

Dimensions without Option Card

Dimensions in mm

a	b	c	G	H			\varnothing
210	295	187	190	283	6		6
Dimensions in in.							
a	b	c	G	H	K	\varnothing	
8.26	11.61	7.36	7.48	11.14	0.23	0.23	

Dimensions with 1 Option Card (1)

Dimensions in mm

a	C1	G	H	K	Ø
210	210	190	283	6	6

Dimensions in in.

a	c1	G	H	K	\varnothing
8.26	8.26	7.48	11.14	0.23	0.23

(1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

Dimensions with 2 Option Cards (1)

Dimensions in mm

a	c2	G	H	K	\varnothing
210	233	190	283	6	6

Dimensions in in.

a	C2	G	H	K	\varnothing
8.26	9.17	7.48	11.14	0.23	0.23

[^0]Mounting and Clearance

Mounting Recommendations

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.
Install the unit vertically:

- Avoid placing it close to heating elements
- Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

Clearance

Mounting Types
Type A Mounting

Type B Mounting

Type C Mounting

By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP 20.
The protective blanking cover may vary according to the drive model (refer to the user guide).
The protective blanking cover must be removed from ATV 71P...N4Z drives when they are mounted in a dust and damp proof enclosure.

Product data sheet

Mounting and Clearance

Specific Recommendations for Mounting the Drive in an Enclosure

Ventilation

To ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Ensure that there is sufficient ventilation. If there is not, install a forced ventilation unit with a filter. The openings and/or fans must provide a flow rate

- Use special filters with IP 54 protection.
- Remove the blanking cover from the top of the drive

Dust and Damp Proof Metal Enclosure (IP 54)

The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.
This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1

Three-Phase Power Supply with Upstream Breaking via Contactor

A1 ATV71 drive
KM1 Contactor
L1 DC choke
Q1 Circuit-breaker
Q2 GV2 L rated at twice the nominal primary current of T1
Q3 GB2CB05
S1, S2 XB4 B or XB5 A pushbuttons
T1
(1) 100 VA transformer 220 V secondary

Line choke (three-phase); mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71
(3) Fault relay contacts. Used for remote signalling of the drive status
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supp
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H $\cdot \bullet$ M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place of
(7) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Connections and Schema

Wiring Diagram Conforming to Standards EN 954-1 Category 1, IEC/EN 61508 Capacity SIL1, in Stopping Category 0 According to IEC/EN 60204-1

Three-Phase Power Supply with Downstream Breaking via Switch Disconnector
\&

A1 ATV71 drive
L1 DC choke
Q1 Circuit-breaker
Q2 Switch disconnector (Vario)
(1) Line choke (three-phase), mandatory for ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse))
(2) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections
(3) Fault relay contacts. Used for remote signalling of the drive status.
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supp
(5) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(6) Optional DC choke for ATV71H \cdots M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...D75N4 and ATV71P...N4Z drives. Connected in place of
(7) Software-configurable current $(0 \ldots 20 \mathrm{~mA})$ or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(8) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 0 According to IEC/EN 60204-1

Three-Phase Power Supply, Low Inertia Machine, Vertical Movement

ATV71 drive
A2 Preventa XPS AC safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" function f F1 Fuse
L1 DC choke
Q1 Circuit-breaker
S1 Emergency stop button with 2 contacts
S2 XB4 B or XB5 A pushbutton
(1) Power supply: 24 Vdc or Vac, $48 \mathrm{Vac}, 115 \mathrm{Vac}, 230 \mathrm{Vac}$.
(2) S2: resets XPS AC module on power-up or after an emergency stop. ESC can be used to set external starting conditions.
(3) Requests freewheel stopping of the movement and activates the "Power Removal" safety function.
(4) Line choke (three-phase), mandatory for and ATV71HC11Y...HC63Y drives (except when a special transformer is used (12-pulse)).
(5) The logic output can be used to signal that the machine is in a safe stop state.
(6) For ATV71HC40N4 drives combined with a 400 kW motor, ATV71HC50N4 and ATV71HC40Y...HC63Y, refer to the power terminal connections (7) Fault relay contacts. Used for remote signalling of the drive status.
(8) Connection of the common for the logic inputs depends on the positioning of the SW1 switch. The above diagram shows the internal power supp (9) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter $2.54 \mathrm{~mm} / 0.09 \mathrm{in}$., maxin
(10) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(11) Optional DC choke for ATV71H \cdots M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P..•N4Z drives. Connected in place of
(12) Software-configurable current $(0 \ldots 20 \mathrm{~mA})$ or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.
(13) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Connections and Schema

Wiring Diagram Conforming to Standards EN 954-1 Category 3, IEC/EN 61508 Capacity SIL2, in Stopping Category 1 According to IEC/EN 60204-1

Three-Phase Power Supply, High Inertia Machine

A1
A2 (5) Preventa XPS ATE safety module for monitoring emergency stops and switches. One safety module can manage the "Power Removal" safety fu F1

F1
L1
Q1
S1
S2
(1)
(1)
(2)
(3)
(4)
(4)
(5)
(5)
(6)
(7)
(8)
(9)

Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter 2.54 mm/0.09 in., maxim
Logic inputs LI1 and LI2 must be assigned to the direction of rotation: LI1 in the forward direction and LI2 in the reverse direction.
(12) There is no PO terminal on ATV71HC11Y...HC63Y drives.
(13) Optional DC choke for ATV71H•••M3, ATV71HD11M3X...HD45M3X, ATV71•075N4...•D75N4 and ATV71P•••N4Z drives. Connected in place o
(14) Software-configurable current ($0 \ldots .20 \mathrm{~mA}$) or voltage ($0 \ldots .10 \mathrm{~V}$) analog input.
(15) Reference potentiometer.

All terminals are located at the bottom of the drive. Fit interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.

Product data sheet

Performance Curves

Derating Curves

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type. For intermediate temperatures (e.g. $55^{\circ} \mathrm{C}$), interpolate between 2 curves.

Recommended replacement(s)

ATV71HD11N4Z may be replaced by any of the following products:

Variable speed drive, Altivar Machine ATV340, 11 kW Heavy Duty, 400 V , 3 phases ATV340D11N4

Variable speed drive, Altivar Process ATV900, ATV930, $15 \mathrm{~kW}, 380 . .480 \mathrm{~V}$, cabinet Integration, IP20
ATV930D15N4Z

[^0]: (1) Option cards: I/O extension cards, communication cards or "Controller Inside" programmable card.

