Product data sheet

Specifications

Variable speed drive, Altivar Machine ATV320, 4 kW, 380... 500 V , 3 phases, compact

ATV320U40N4C

Main	
Range of product	Altivar Machine ATV320
Product or component type	Variable speed drive
Product specific application	Complex machines
Variant	Standard version
Format of the drive	Compact
Mounting mode	Wall mount
Communication port protocol	Modbus serial CANopen
Option card	Communication module, CANopen Communication module, EtherCAT Communication module, Profibus DP V1 Communication module, PROFINET Communication module, Ethernet Powerlink Communication module, EtherNet/IP Communication module, DeviceNet
[Us] rated supply voltage	$380 \ldots 500 \vee-15 \ldots 10 \%$
Nominal output current	9.5 A
Motor power kW	4.0 kW for heavy duty
EMC filter	Class C2 EMC filter integrated
IP degree of protection	IP20
Complementary	
Discrete input number	7
Discrete input type	STO safe torque off, 24 V DC, impedance: 1.5 kOhm DI1...DI6 logic inputs, 24 V DC (30 V) DI5 programmable as pulse input: $0 . . .30 \mathrm{kHz}, 24 \mathrm{~V} \mathrm{DC}(30 \mathrm{~V})$
Discrete input logic	Positive logic (source) Negative logic (sink)
Discrete output number	3
Discrete output type	Open collector DQ+ 0... 1 kHz 30 V DC 100 mA Open collector DQ-0... 1 kHz 30 V DC 100 mA
Analogue input number	3
Analogue input type	Al1 voltage: $0 . . .10 \mathrm{~V}$ DC, impedance: 30 kOhm , resolution 10 bits AI2 bipolar differential voltage: +/- 10 V DC, impedance: 30 kOhm , resolution 10 bits Al3 current: $0 \ldots 20 \mathrm{~mA}$ (or $4-20 \mathrm{~mA}, \mathrm{x}-20 \mathrm{~mA}, 20-\mathrm{x} \mathrm{mA}$ or other patterns by configuration), impedance: 250 Ohm, resolution 10 bits
Analogue output number	1

Analogue output type	Software-configurable current AQ1: $0 \ldots 20 \mathrm{~mA}$ impedance 800 Ohm, resolution 10 bits Software-configurable voltage AQ1: $0 . . .10 \mathrm{~V}$ DC impedance 470 Ohm, resolution 10 bits
Relay output type	Configurable relay logic R1A 1 NO electrical durability 100000 cycles Configurable relay logic R1B 1 NC electrical durability 100000 cycles Configurable relay logic R1C Configurable relay logic R2A 1 NO electrical durability 100000 cycles Configurable relay logic R2C
Maximum switching current	Relay output R1A, R1B, R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 250 V AC Relay output R1A, R1B, R1C on resistive load, cos phi $=1: 3 \mathrm{~A}$ at 30 V DC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi $=0.4$ and $L / R=7 \mathrm{~ms}: 2 \mathrm{~A}$ at 250 V AC Relay output R1A, R1B, R1C, R2A, R2C on inductive load, cos phi $=0.4$ and L/R $=7 \mathrm{~ms}$: 2 A at 30 V DC Relay output R2A, R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 250 V AC Relay output R2A, R2C on resistive load, cos phi $=1: 5 \mathrm{~A}$ at 30 V DC
Minimum switching current	Relay output R1A, R1B, R1C, R2A, R2C: 5 mA at 24 V DC
Method of access	Slave CANopen
4 quadrant operation possible	True
Asynchronous motor control profile	Voltage/frequency ratio, 5 points Flux vector control without sensor, standard Voltage/frequency ratio - Energy Saving, quadratic U/f Flux vector control without sensor - Energy Saving Voltage/frequency ratio, 2 points
Synchronous motor control profile	Vector control without sensor
Maximum output frequency	0.599 kHz
Transient overtorque	170... 200% of nominal motor torque
Acceleration and deceleration ramps	Linear U cus Ramp switching Acceleration/deceleration ramp adaptation Acceleration/deceleration automatic stop with DC injection
Motor slip compensation	Automatic whatever the load Adjustable 0... 300 \% Not available in voltage/frequency ratio (2 or 5 points)
Switching frequency	2... 16 kHz adjustable $4 . . .16 \mathrm{kHz}$ with derating factor
Nominal switching frequency	4 kHz
Braking to standstill	By DC injection
Brake chopper integrated	True
Line current	13.7 A at 380 V (heavy duty) 10.6 A at 500 V (heavy duty)
Maximum input current	13.7 A
Maximum output voltage	500 V
Apparent power	9.2 kVA at 500 V (heavy duty)
Network frequency	$50 . . .60 \mathrm{~Hz}$
Relative symmetric network frequency tolerance	5%
Prospective line Isc	5 kA
Base load current at high overload	9.5 A
Power dissipation in W	Fan: 111 W at 380 V , switching frequency 4 kHz
With safety function Safely Limited Speed (SLS)	True
With safety function Safe brake management (SBC/SBT)	False
With safety function Safe Operating Stop (SOS)	False
2	

With safety function Safe Position (SP)	False
With safety function Safe programmable logic	False
With safety function Safe Speed Monitor (SSM)	False
With safety function Safe Stop 1 (SS1)	True
With sft fct Safe Stop 2 (SS2)	False
With safety function Safe torque off (STO)	True
With safety function Safely Limited Position (SLP)	False
With safety function Safe Direction (SDI)	False
Protection type	Input phase breaks: drive Overcurrent between output phases and earth: drive Overheating protection: drive Short-circuit between motor phases: drive Thermal protection: drive
Width	140 mm
Height	184.0 mm
Depth	158.0 mm
Net weight	2.2 kg
Environment	
Operating position	Vertical +/-10 degree
Product certifications	CE ATEX NOM GOST EAC RCM KC
Marking	CE ATEX UL CSA EAC RCM
Standards	EN/IEC 61800-5-1
Electromagnetic compatibility	Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 $1.2 / 50 \mu \mathrm{~s}-8 / 20 \mu \mathrm{~s}$ surge immunity test level 3 conforming to IEC 61000-4-5 Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11
Environmental class (during operation)	Class 3C3 according to IEC 60721-3-3 Class 3S2 according to IEC 60721-3-3
Maximum acceleration under shock impact (during operation)	$150 \mathrm{~m} / \mathrm{s}^{2}$ at 11 ms
Maximum acceleration under vibrational stress (during operation)	$10 \mathrm{~m} / \mathrm{s}^{2}$ at $13 . .200 \mathrm{~Hz}$
Maximum deflection under vibratory load (during operation)	1.5 mm at $2 . . .13 \mathrm{~Hz}$
Permitted relative humidity (during operation)	Class 3K5 according to EN 60721-3
Volume of cooling air	$37.7 \mathrm{~m} 3 / \mathrm{h}$
Overvoltage category	III

Regulation loop	Adjustable PID regulator
Speed accuracy	$+/-10 \%$ of nominal slip 0.2 Tn to Tn
Pollution degree	2

Ambient air transport $-25 \ldots 70^{\circ} \mathrm{C}$ temperature

Ambient air temperature for operation	$-10 \ldots 50^{\circ} \mathrm{C}$ without derating
	$50 \ldots 60^{\circ} \mathrm{C}$ with derating factor

Ambient air temperature for $-25 \ldots 70^{\circ} \mathrm{C}$ storage

Packing Units

Unit Type of Package 1	PCE
Number of Units in Package 1	1
Package 1 Height	24.5 cm
Package 1 Width	19.1 cm
Package 1 Length	26.5 cm
Package 1 Weight	2.793 kg
Unit Type of Package 2	P06
Number of Units in Package 2	12
Package 2 Height	75 cm
Package 2 Width	60 cm
Package 2 Length	80 cm
Package 2 Weight	46.516 kg

Offer Sustainability

Sustainable offer status	Green Premium product
REACh Regulation	REACh Declaration
EU RoHS Directive	Pro-active compliance (Product out of EU RoHS legal scope) EU RoHS Declaration
Mercury free	Yes
China RoHS Regulation	China RoHS declaration
RoHS exemption information	Yes
Environmental Disclosure	Product Environmental Profile
Circularity Profile	End of Life Information
WEEE	The product must be disposed on European Union markets following specific waste collection and never end up in rubbish bins
California proposition 65	WARNING: This product can expose you to chemicals including: Lead and lead compounds, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov
Upgradeability	Upgraded components available

Product data sheet
ATV320U40N4C
Dimensions Drawings

Dimensions

Right View, Front View and Front View with EMC Plate

Mounting and Clearance

Mounting Types

Mounting Type A: Individual with Ventilation Cover

Only Possible at Ambient Temperature Less or Equal to $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$
Mounting Type B: Side by Side, Ventilation Cover Removed

Mounting Type C: Individual, Ventilation Cover Removed

For Operation at Ambient Temperature Above $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$

Connections and Schema

Connection Diagrams

Diagram with Line Contactor

Connection diagrams conforming to standards ISO13849 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

Diagram with Switch Disconnect

Connection diagrams conforming to standards EN 954-1 category 1 and IEC/EN 61508 capacity SIL1, stopping category 0 in accordance with standard IEC/EN 60204-1.

(1) Line choke (if used)
(2) Fault relay contacts, for remote signaling of drive status

Product data sheet

ATV320U40N4C
Connections and Schema

Control Connection Diagram in Source Mode

(1) Analog output
(2) Analog inputs
(3) Reference potentiometer (10 kOhm maxi)
(4) Digital inputs

Connections and Schema

Digital Inputs Wiring

The logic input switch (SW1) is used to adapt the operation of the logic inputs to the technology of the programmable controller outputs. Switch SW1 set to "Source" position and use of the output power supply for the DIs.

ATV $320 \cdot \bullet \cdot \bullet$ ATV 320 e.e.e.W(S)

Switch SW1 set to "Source" position and use of an external power supply for the DIs.

Switch SW1 set to "Sink Int" position and use of the output power supply for the DIs.

Switch SW1 set to "Sink Ext" position and use of an external power supply for the DIs.

Performance Curves

Derating Curves

In: Nominal Drive Current
SF: Switching Frequency

Recommended replacement(s)

